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Summary 

The didehydrocorrinoid derivative of vitamin B 12, ‘pyrocobester’ 1 (hexamethyl 
Coa, Cop-dicyano-7-de (carboxymethyl)-7,8-didehydrocobyrinate), is oxygenated 
in the presence of visible light and molecular oxygen to give the previously un- 
known ‘5,6-dioxosecopyrocobester’ 3 (hexamethyl Coa, Cop-dicyano-5,6-dioxo-7- 
de (carboxymethyl)-7,8-didehydro-5,6-secocobyrinate) under regioselective cleav- 
age of the macrocycle at the 5,6-position. Efficiency and yield of this reaction 
involving ‘singlet oxygen’ depend on the solvent used: with CC14 a 96% yield of 3 
is obtained. 

A known chemical effect of the interaction of light with corrinoid Co(1II)- 
complexes is the cleavage of the bond of an axial ligand to the metal center, an 
especially mild and specific way of homolytically dissociating the Co (HI), C-bond 
(e.g.) of coenzyme BI2 [I]. Other chemical properties of electronically excited 
corrinoid Co-complexes are not clearly documented, so far 121. 

Therefore the observation3) of an efficient light-induced chemical reaction of 
the B-didehydrocorrinoid hexamethyl Coa, Cop-dicyano-7-de (carboxymethy1)-7,s- 
didehydrocobyrinate [3]  (1; ‘pyrocobester’), and apparently not involving the axial 
ligands, was unusual and caught our attention. This reaction was observed during 
chromatographic purification of 1 [4] or during attempts to crystallize 1 without 

I)  
2, 
3, 
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carefully excluding its exposure to dim daylight. Subsequently, this reaction of 
‘pyrocobester’ 1 (itself a product of thermolysis of ‘cobester’ 2 [ 5 ]  (heptamethyl 
Coa, Cop-dicyanocobyrinate)) was analyzed to be the cleavage of 1 at the 5,6-position 
to the corresponding ‘5,6-dioxosecopyrocobester’ 3 (hexamethyl Co a, Co -dicyano- 
5,6-dioxo-7-de (carboxymethyl)-7,8-didehydro-5,6-secocobyrinate), as shown in the 
Scheme. 

The structure of 3 was deduced on the basis of the information from the ‘H- and 13C-NMR. 
spectra as well as mass spectra, but already the pronounced hypsochromic shift of the absorption 
maxima in the UV./VIS. spectra on its own pointed to a considerable shortening of the main chromo- 
phore of 3 compared to that of 1 (see the Figure). 

In the ‘H-NMR. spectrum of 3 four critical singlets due to CH3-groups (at 1.73 (H3C(7I)); 1.98 
(H3C(I1)); 2.17 (H3C(15’)) and 2.88 (H3C(5I))) can be assigned with the help of specific nuclear 
Overhauser enhancements (NOE), obtained by difference NOE-measurements [6]4)5)6). This spectrum 
is compatible with cleavage at the 5,6-position but excludes reaction at the 14,15-position (or at the 
methine bridge HC(10)). The 13C-NMR. spectrum exhibits new signals at low field, one of which 
(at 196.7 ppm) is due to the new acetyl function (CH3C(5)= 0) at the cleavage site. The two signals for 
the quaternary C-atoms C(7) at 139.1 ppm7) and C(8) at 144.6 ppm7), and a new isolated high-field 
signal at 9.7 pprn for H3C(7I) show ring B to be intact and support cleavage at the 5,6-position. The 
fragmentation pattern in the electron impact (EL) mass spectrum is dominated by two signals at 
mlz 640 and 296 due to the characteristic break-down of A/B-secocorrinoid metal complexes [ 1 I ]  [ 121 
into the tricyclic B, C, D and the ring A fragments, respectively. A positive-ion fast-atom-bombard- 

4, Significant nuclear Overhauser enhancements (enh.) for 3 upon irradiation (irr.) at the frequencies 
of the four critical singlets (300 MHz, CsD&: irr. at 1.73, enh. at 2.45 (m, HzC(8’)?); 2.88 
(s, H3C(5I)), and 3.43 (s, COOCH3); irr. at 1.98, enh. at 1.09 (s, H3C(2I)), and 3.08 (dx  t, HC(18)); 
irr. at 2.17, enh. at 0.98 (s, H3C(17I)), and 2.70 (m, HC(13)?); irr. at 2.88, enh. at 1.73 (s, H3C(7I)), 
3.43 (s, COOCH3), and 3.57 (r-like, H-C(3)). 
In a synthetic C/D-secocorrinoid Ni(I1)-complex [7] X-ray structural analysis [8] shows ring D 
to be considerably out of the ‘mean molecular plane’, and in close contact with ring C (at the site 
of intended closure of the corrin ring). For 3 a gross structural similarity is indicated by the 
observation of NOE across the A/B-cleavage site (NOE between H3C(5I) and H3C(7’), and NOE 
on irradiation of H3C(5I) or H3C(7I) at a specific ester-CH3-group (3.43 pprn), presumably of 
the propionic acid side chain of ring A). 
The numbering follows that of vitamin-BlZ derivatives [9a]; see e.g. also [9b], where recently the 
complete assignment of the ‘H-NMR. spectrum of ‘cobester’ 2 in CsDs-solution has been published. 
Assigned by comparison with I3C-NMR. studies on bile pigments [ 101. 

5 ,  

6,  
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Figure. Changes in the UKI VIS. spectrum as observed during the photo-oxygenation of >yrocobester’ 1 
in CCld [20] (exciting wavelength: 710 nm; initial concentration of 1: 1.0. moV1; O2 (1 atm), RT., 
0.1 cm path length; spectra taken after irradiation for time intervals of 2 min (up to 26 min), final 

spectrum after 120 min irradiation) 

ment(FAB.)-mass spectrum [13a] exhibits a base peak at m/z 994, due to loss of the axial ligands 
( ( M +  I)+-CN-HCN), while in a negative-ion-FAB./MS. [13b] the base peak appears at m/z 1046, 
corresponding to the molecular ion ( M - ) .  

On further elaboration of this exceptional light-induced reaction of 1 (mainly 
for the purpose of accurate kinetic information [14], 3 could be isolated in 96% 
yield: Irradiations) of an oxygen-saturatedg), deep green solution of 1 in CCl4l0) 
at room temperature with the light of a tungsten lamp produced a rapid change 
of color of the reaction mixture to intense violet. Analysis by TLC. indicated a clean 
conversion to the secocorrinoid Co-complex 3. The reaction can easily be monitored 
also with the help of UVJVIS. spectra (see Fig.). 

8, 

9, 

Such an oxygen-saturated solution of 1 was found not to undergo any noticeable change during 
storage for 20 days at RT. in the absence of light. 
Irradiation of a degassed solution of 1 in cC14 under comparable conditions (200 W W-lamp; 
150 min, RT.) resulted in only a 5% decrease of the optical density at 722 nm (Amax of 1 in CCl,), 
and analysis by TLC. of this solution of 1 did not clearly indicate formation of 3. 
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Aside from the preparative outcome reported here, parallel mechanistic investi- 
gations [14] of this photoreaction allow us to classify it as a reaction involving 
‘singlet oxygen’ photogenerated via excitation of the didehydrocorrinoid Co (111)- 
complex 1 (findings, that already stimulated related studies on the parent hepta- 
methyl cobyrinate 2 [ 151. The regioselectivity of the oxygenation reaction”) at the 
5,6-position of the B-didehydrocorrin 1 can be correlated with the minimal HMO 
‘(atomic) localization energy’ for the ligand n-system of 1 (decrease of n-electronic 
energy upon interruption at a specific C-center of the conjugated n-system of 1 [ 161, 
calculated (HMO calculation [ 171) to be smallest for electrophilic attack at the 
5-position. Apparently the reactions of corrinoid Co (111)-complexes with ‘singlet 
oxygen’ reflect the reactivity of their ligand n-systems towards electrophiles12) 1 3 ) .  

The results described here also underline the earlier proposal [ 151 to apply 
photo-oxygenation to vitamin-B 12 derivatives as a selective and convenient method 
for the preparation of specific dioxosecocobyrinates, believed to be useful as pre- 
cursors for the synthesis of metallocobyrinates not containing a Co-ion [ 121. In this 
respect, further preparative work has allowed to remove the Co-ion from the seco- 
cobyrinate 3 9  to reinsert Co and to reconstitute 1 by reductive ring closure [19] 
(in analogy to the work reported in [ 121). 

B. K. would like to thank Prof. Dr. A .  Eschenmoser for this support of this work. R. S. is grateful 
to Hoffmann-La Roche & Co. AG, Basel, for a scholarship. The authors in Zurich would like to 
acknowledge also the help of Dr. B. J a m ,  Frl. B. Brandenberger and Dr. J. Meili. G. H.  is grateful to 
Prof. Dr. A .  Gossauer for his help during this work and also to PD Dr. L. Ernst (Braunschweig) and 
Prof. Dr. H .  Schwarz (Berlin) for their collaboration. 

Experimental Partls) [ZO] 

A solution of 30.0 mg (29.5 pmol) of crystalline ‘pyrocobester’ 1 in 50 ml of CC4 (Merck, p .a . )  
was introduced into a photo-oxygenation vessel (Pyrex, internal cooling with water)I6) and the solution 
purged with a stream of 0 2  for ca. 5 min. Then the deep-green solution was irradiated with the 
unfiltered light of two 200 W W-lamps (placed externally, diametrically and at a distance of 5 cm 
from the reaction vessel), while continuously agitating the solution by a weak 02-flow. After about 
2 min of irradiation, the solution changed its color to intense violet, and the reaction was stopped after 
5 min, when analysis of the mixture by TLC. indicated total conversion of 1 to 3. The solution was 
transferred into a round bottom flask, and the solvent was evaporated under reduced pressure at RT. 
The residue was purified by chromatography on three thin layer plates (Merck, Kieselgel60, 2OX 20 cm; 
CH2C12/CH30H (1% HCN) 96:4)”). The violet fraction was scraped off and eluted with CH2C12/ 

13) 

14) 

Preparative experiments with CHzC12 as solvent resulted in a strongly reduced rate of oxygenation 
and a somewhat lower yield of 3 (80%) 141. 
The remaining side-products (ca. 3%), distributed over several fractions (separable by TLC.), were 
not identified. 
The photo-oxygenation of 2 at the 5,6- and 14,15-positions [15] also correlates with minimal 
HMO ‘localization energies’ [I81 for the cornn a-system. 
Strain (as presumably) caused by the interaction of the methyl groups H3C(5I) and H3C(7I) 
should also enhance the reactivity of 1 towards photo-oxygenation at the 5,6-position. 
A luminescing yellow compound, apparently the free 5,6-dioxo-didehydro-5,6-secocorrinoid ligand 
4 is obtained [ 191 upon treatment of 3 with hydrogen sulfide in pyridine. 
Abbreviations and specifications as in [ 151, unless otherwise stated. 
A photoreactor, see e.g. [21], p. 131. 
All these manipulations were performed at 0-5”. 
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CH30H (1% HCN) lO:l”). The filtrate was shaken with 20 ml of satd. aq. NaHC03 solution (to 
which 100 mg of KCN had been added)I7), the org. layer was filtered through a plug of cotton-wool 
and the solvents were removed under reduced pressurei7) giving 3 as a violet residue (30.0 mg; 
28.6 pnol), pure by TLC. It was precipitated from a benzene solution (ca. 2 ml) by its addition to 50 ml 
of hexane. The violet, amorphous precipitate was separated from the (nearly colorless) supernatant 
liquid and was dried (V., then HV./RT., 1 h) to give 29.6 mg of 3 (28.2 pmol, 96% yield). This material 
was used for the subsequent analysis. Hexanzethyl Coa, Co~-dicyano-5,6-dioxo-7-de(carboxymethyl)- 7,8- 
didehydro-5.6-secocobyrinate (3). TLC. (CH2C12/CH3OH (1% HCN) 96: 4) Rf 0.18, m.p. 120- 125” 
(darkens at 110’). - UV./VIS. (c== 8.29. moV1, CH30H; 0.05% HCN): 300 S (4.06), 309 (4.09), 
366 S (3.62) 397 S (3.40), 561 (3.83), 615 S (3.57); min. 277, 420. - CD. (c=8.29. moV1, CH30H; 
0.05% HCN): 248 (13.3), 309 (71.8), 373 (- 16.3), 426 (-24.1), 5 0 7 s  ( -8 .Q  580s (-4.5); J.0 at 345. - 
IR.  YO)^^): 2995m. 2130w, 1735s, 1605w, 1560s, 1480m, 1440s, 1410m, 1395m, 1375m, 1370m, 1355w, etc. - 
’H-NMR. (300 MHz, C6D6, C6D5H at 7.15 pprn)6)18); 0.94, 0.98, 1.06 and 1.09 (4s, 12 H, 4CH3); 
1.5-3.0 (m, 34 H) overlapped by 1.73, 1.98, 2.17 and 2.88 (4 s, 4 CH3)4); 3.08 (‘dxt’, X of ABXY, 
J A X =  10.5, J B X = ~ .  J,yy=10.6, l H ,  H-C(18)); 3.24, 3.29, 3.31, 3.35, 3.37 and 3.43 (6s, 18H, 
6 COOCH3); 3.57 (t-like, 1 H, H-C(3)); 3.92 (d, Y of XY, 1 H, H-C(19)); 5.60 (s, 1 H, H-C(1O)); 
1.2-1.4 (br., ca. 4 H, H20). - I3C-NMR.6)I5): 9.70 (qa, H3C(7I)); 15.70, 17.01, 18.36 and 19.44 (4 qa); 
19.98 ( t ,  H2C(8’)?); 20.07 (qa); 24.17 and 25.46 (2 t); 27.86 (qa, H3C,j(12’)?); 29.05 (qa, H3C(5‘)); 
29.89, 30.61, 31.75, 32.89, 33.07 and 33.58 (6t); 40.23 (d, HC(l8)?); 42.11 (t, HzC(2])?); 46.91 and 
49.21 (2s, C(2), C(12)); 51.64 (double int.), 51.88, 51.97, 52.12 and 52.51 (Sqa, 6COOCH3); 53.88 
(d, HC(13)?); 58.59 (s, C(17)); 59.43 (d, HC(3)?); 74.82 (d, HC(19)); 86.92 (s, C(1)); 92.67 (d, HC(l0)); 
109.33 (s, C(15)); 128.98 and 134.25 (2s, 2 CN); 139.13 (s, C(7)?); 144.61 (s, C(8)?); 161.14, 164.98, 171.03, 
171.39, 172.53, 172.80, 173.01, 173.69, 176.03, 177.92 and 183.34 ( I l s ,  6COOCH3, C(6), C(9), C(11), 
C(14), C(16)); 186.93 (s, C(4)); 196.73 (s, C(5)).  - EIJMS. (Hitachi RMU-6M): 964 (14), 963 (39). 

297 (23), 296 (IOO)l9), etc. - Positive-ion-FAB./MS.20): 1029 (16), 1028 (27, ( M +  I)+- 17), 998 (19), 

( M +  l)+- 67), 964 (18), 962 (19). etc. ~ Negative-ion-FAB./MS.21): 1048 (34), 1047 (67), 1046 (100, M-), 

960 (21) etc. 

962 (77), 961 (39), 960 (65), 904 (14), 903 (33), 642 (21), 641 (66), 640 (80, M+-406)I9), 639 (29), 

997 (32), 996 (69, ( M +  1)+-51)20), 995 (31), 994 (100, ( M +  1)+-53)19), 982 (26), 981 (29). 980 (47, 

1045 (48, ( M -  I)-), 996 (19), 995 (34), 994 (62, M--52), 993 (31), 963 (24), 962 (40), 961 (57). 

C51H67CoN6014 Calc. C 58.50 H 6.45 N 8.03% Found C 58.45 H 6.43 N 8.10% 
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